Empirical Harvest Rules

Their use in the development of advice for the SEAFO fisheries
Reminder: Some Basic Ideas

The MSY concept

From ICES (2014a)
Purpose of Harvest Rules

- **Pre-agreed** actions:
- IT this happens, THEN we do THAT
- Have a plan!
- Decisions on RULES must be taken BEFORE the need arises
 - Hot heads not good at taking decisions—Ad-hoc management feels good, but performs poorly
Managing Fisheries Sustainably: Fisheries Control Rules

MSY-Based Fisheries Control Rule used in ICES framework

A General Fisheries Control Rule compatible with Australia’s Harvest Strategy Policy
Purpose of fish stock assessment:

Where do we want (not) to be!

Where are we?

Where should we go?
Problems in Data-Poor Stocks/Fisheries

- Do not know where we are
- Do not know where we want to be....
Problems in Data-Poor Stocks/Fisheries

• Do not know where we are
• Do not know where we want to be....
Problems in Data-Poor Stocks/Fisheries

• Do not know where we are
• Do not know where we want to be....
Fisheries Advisory Process (General)

Start Assessment Process

Consider the type and amount of information available

Analyse the information to decide the most suitable indicator for the limit and/or target Reference Points
(This will depend on the information available and the expected/current level of exploitation)

Estimate the status of the stock/fishery in the last period with available data
(calculate the value of the indicator(s))

Compare the current value of the indicator with the target and limit values

Apply Rule 2

Apply Rule 1

Calculate Recommended TAC/Catch/Effort

TAC Recommendation
Harvest control rules used for the determination of catch advice

- ICES: Simple approach (2010)

<table>
<thead>
<tr>
<th>Trend of stock (or indicator)</th>
<th>No Overfishing</th>
<th>Overfishing or Unknown Exploitation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreasing stock trend</td>
<td>Reduce catch from recent level at rate of stock decrease</td>
<td>Reduce catch from recent level at rate greater than the rate of stock decrease</td>
</tr>
<tr>
<td>Stable stock trend</td>
<td>Maintain catch at recent level</td>
<td>Reduce catch from recent level</td>
</tr>
<tr>
<td>Increasing stock trend</td>
<td>Increase catch from recent level at rate of stock increase</td>
<td>Maintain catch at recent level</td>
</tr>
</tbody>
</table>
-Alaska 6-tier system-

- **Data rich**
 - Tier 1: **Reliable** point estimates of B and B_{mS} and reliable pdf of F_{mS}
 - Tier 2: **Reliable** point estimates of B, B_{mS}, F_{mS}, $F_{35\%}$ and $F_{40\%}$
 - Tier 3: **Reliable** point estimates of B, $B_{40\%}$, $F_{35\%}$ and $F_{40\%}$
 - Tier 4: **Reliable** point estimates of B, $F_{35\%}$ and $F_{40\%}$

- **Data poor**
 - Tier 5: **Reliable** point estimates of B and natural mortality rate M
 - Tier 6: **Reliable** catch history from 1978–1995
ICES 6-Category Approach (2012)

Quantitative assessment & forecast available

Yes

Assessment and forecast used for ICES MSY advice

Yes

see Data Rich methods (Cat 1)

No

see Trends Only methods (Cat 2)

No

Commercial or non-commercial data or proxies available

Yes

Survey-based assessments indicate stock trends

see Survey-Based methods (Cat 3)

Only catch data available

see Catch Only methods (Cat 4)

No

see Data Poor & Bycatch methods (Cats 5 & 6)
Empirical Harvest Control Rules (1)

• Control rules (Trigger points and actions) are not based on stock assessment results
 • Simple indicators of stock or fishery status
• Empirical HCR need a more rigid and agreed plan
• –The less reliable the indicator, the more you need a plan that is agreed by all stakeholders
Harvest rules
- ICES: Data-Rich Stocks

• If estimated stock biomass in the current year is less than Btrigger: *Method 1.1.2*:
 • Catch advice is based on the ICES MSY control rule, (F<FMSY as a linear function of biomass relative to Btrigger):
 $$F_{MSY-HCR}(2013) = F_{MSY} \left(\frac{B_{2013}}{B_{Trigger}} \right)$$
 • If a gradual transition is not appropriate because stock size is low (e.g. below Blim) and the outlook is for a further decline (e.g. as a result of low recruitment) unless fishing mortality is reduced more rapidly: *Method 1.1.3*
 • ICES may advise on a more rapid transition or application of $F_{MSY-HCR}$ as soon as possible.

• For extremely low biomass: *Method 1.2*:
 • A recovery plan and possibly zero catch are advised
ICES Control Rules

• Category 2: Stocks with analytical assessments and forecasts that are only treated qualitatively

• Harvest Control Rule:
 • If estimated biomass is greater than B_{trigger}: \textit{Method 2.1.1}
 • Calculate the recommended catch for next year ($C_{y+1 \text{ Calc}}$) using the same equations as in category 1
 • Apply the 20\% Uncertainty Cap: $C_{y+1} = 0.8 \times C_{y+1 \text{ Calc}}$
 • If estimated biomass is less than B_{trigger}
 • Catch advice is based on the ICES MSY control rule, ($F < F_{\text{MSY}}$ as a linear function of biomass relative to B_{trigger}):
 $$F_{\text{MSY-HCR}}(2013) = F_{\text{MSY}} \left(\frac{B_{2013}}{B_{\text{Trigger}}} \right)$$
 • Apply the 20\% Uncertainty Cap: $C_{y+1} = 0.8 \times C_{y+1 \text{ Calc}}$
ICES Control Rules

- Category 3: Stocks for which survey-based assessments indicate trends
 - Harvest Control Rule:

- If a reliable abundance index is available, apply the abundance index-adjusted, status-quo catch (a harvest control rule). If, in addition, the current value of F(), with respect to an FMSY proxy (FMSY-proxy) is known, then

- The advice is based on a comparison of the two most recent index values with the three preceding values, combined with recent catch or landings data.

1. Determine catch advice from the survey- and FMSY-transition adjusted status quo catch

 - where

 and ω is 0.6 for 2013, 0.8 for 2014, and 1.0 for 2015 according to the 2010 ICES MSY approach for fisheries advice where a stepwise transition is used to reach FMSY by 2015.

 - In cases where FSQ is close to FMSY-proxy, go to FMSY at once Fy+1 = FMSY-proxy. Note that this was not used in the 2012 advice, but it should be applied going forward.

2. Apply the 20% Uncertainty Cap to the catch advice (see above Methods; Definition of common terms and methods).
 - Apply the 20% Uncertainty Cap: Cy+1 = 0.8 x Cy+1 Calc
 - If estimated biomass is less than Btrigger
 - Catch advice is based on the ICES MSY control rule, (F<FMSY as a linear function of biomass relative to Btrigger):
 - \(F_{MSY-HCR} (2013) = F_{MSY} \left(\frac{B_{2013}}{B_{trigger}} \right) \)
 - Apply the 20% Uncertainty Cap: Cy+1 = 0.8 x Cy+1 Calc
Empirical Harvest Control Rules (3)

- ICES Data-Limited Stocks (DLS) Approach:
- Category 4: Stocks for which reliable catch data are available
 - **Assumptions**
 - Average catch has been sustainable if abundance has not changed
 - Catch advice based on MSY is only appropriate to stocks near B_{MSY}
 - If the MSY estimate is much greater than recent catch
 - Stock size may be less than B_{MSY}
 - Catch advice should increase slowly toward DCAC.
Empirical Harvest Control Rules (4)

- Category 4: Stocks for which reliable catch data are available
 - Method 4.1:
 - A sufficient catch history is available, which need not be continuous, to determine a suitable exploitation rate
 - 1) Estimate MSY
 - DCAC model;
 - 2) If Recent Catch > MSY
 - Method 4.1.1:

Where the ω is 0.6 for 2013, 0.8 for 2014, and 1.0 for 2015 according to the 2010 ICES MSY approach for fisheries advice where a stepwise transition is used to apply the 20% Uncertainty Cap to the catch advice (see above Methods; Definition of common terms and methods)

$$C_{y+1} = (1 - \omega)C_{\text{SQ}} + \omega DCAC$$
Empirical Harvest Control Rules
- ICES Data-Limited Stocks (DLS) Approach -

• Category 5: Data-poor stocks (only landings data)
 • If there is no indication of where F is relative to proxies and no marked positive trends in stock indicators:
 Method 5.2:
 • 1) Calculate the recent catch \(C_{y-1} \) as the average catch over the 2-3 last years, e.g.
 \[C_{y-1} = \frac{\sum_{y-4}^{y-1} C_i}{4} \]
 • 2) Calculate the catch advice \(C_{y+1} \) as \(C_{y+1} = C_{y-1} \).
 • 3) Apply the -20% Precautionary Buffer to the catch advice
 • \(C_{y+1} = 0.8 \times C_{y-1} \)
 • If catches have declined significantly over a period of time and this is considered to be representative of a substantial reduction in biomass:
 Method 5.3:
 • a recovery plan and possibly zero catch is advised
Greenland Halibut (NAFO)
NCEM Article 10 – Greenland Halibut

Harvest Control Rule (HCR) (model free)

Indicator: Slope of Abundance Index

\[
TAC_{y+1} = \begin{cases}
TAC_y \times (1 + \lambda_u \times \text{slope}) & \text{if } \text{slope} \geq 0 \\
TAC_y \times (1 + \lambda_d \times \text{slope}) & \text{if } \text{slope} < 0
\end{cases}
\]

Slope: average slope of the Biomass Indicator (CPUE, Survey) in recent 5 years

- \(\lambda_u\): TAC control coefficient if slope > 0 (Stock seems to be growing) : \(\lambda_u = 1\)
- \(\lambda_d\): TAC control coefficient if slope < 0 (Stock seems to be decreasing) : \(\lambda_d = 2\)
- TAC generated by the HCR is constrained to ± 5% of the TAC in the preceding year.
Empirical Harvest Control Rules

• Australian HCR for Spanner Crab:
 • Basic elements:
 • There is a base TAC calculated from historical data
 • Maximum (Cap) TAC of 2000 tons
 • Indicators used: Trends in the commercial CPUE and the survey CPUE (Difference to Base levels)
 • Decision Rules:
 • If both indices increased more than 10% and are positive:
 • $C_{Y+1} = C_{Y-1} \times 0.5 \times \frac{l_{Obs}}{l_{Base}}$ (Max is TACCap)
 • If at least one of the indices decreased more than 10%:
 • $C_{Y+1} = C_{Y-1} \times 1.0 \times \frac{l_{Obs}}{l_{Base}}$
Empirical Harvest Control Rules (3) - Australia -

• Australian Western Deepwater Trawl Fishery

• Trigger levels for information requirement
 • Basis: Highest recorded catch (HRC)
 • Trigger 1 (catch > 0.5 HRC)
 • Exploratory analysis of catch and effort data
 • Trigger 2 (Catch > HRC)
 • Simple assessment of the fishery – Standardised CPUE + Biological data
 • Trigger 3 (Catch > 2 * HRC)
 • Targeted fishing stops until full stock assessment demonstrates that any increased catch is sustainable.